%%============================================================================== \begin{lecture} \item Ontology of quantum field theory in high-energy physics and condensed matter physics \item Basics of classical field theory (Hamiltonian, Lagrangian) \item Symmetries and conservation laws \end{lecture} %%============================================================================== %%============================================================================== \begin{problemset} \item Functional derivatives \item Lorentz covariance \item Maxwell equations \end{problemset} %%============================================================================== % %%============================================================================== \reference{PS:xi--xvi} % %%============================================================================== \imp{% Before we start our journey, here a few general remarks: % \begin{itemize} % \item Quantum field theory (QFT) is concerned with the quantization of \emph{fields} that live on smooth manifolds (e.g. Euclidean space-time, Minkowski space-time). % \item The most prominent example (which you probably already encountered in one form or the other) is the \emph{quantum theory of the electromagnetic field}, which also initiated the field at the beginning of the 20th century. % \note{ \item As Maxwell theory has special relativity ``built in,'' its QFT must be \emph{relativistic} as well (i.e., the Lorentz group must be a global symmetry). Relativistic QFTs are standard in high-energy physics and will be the focus of this course. % \item QFTs are riddled with \emph{infinities} in their expressions, which makes it hard to define them rigorously as mathematical objects (this is still true for most of them). % \item In the mid of the 20th century, the technique of \emph{renormalization} was developed to systematically deal with these infinities and extract physical predictions. This was a crucial step to make quantum electrodynamics (and the standard model afterwards) a useful and accepted QFT. % \item At the same time, the development of \emph{Feynman diagrams} as a systematic approach to perturbation theory paved the way to successful applications of QFTs, in particular quantum electrodynamics. % \item In the second half of the 20th century, the toolbox of QFT was imported from high-energy physics into \emph{condensed matter physics} for effective, large scale \& low energy descriptions of many-body systems (such as magnets and superconductors); in particular, it proved useful for the description of \emph{phase transitions} (\uref \emph{Conformal Field Theories}). These QFTs are typically not relativistic as the Lorentz group is not a symmetry of condensed matter systems. % \item In the context of condensed matter physics, the method of renormalization is less opaque and has a physical interpretation. These insights led to a better understanding of renormalization in high-energy physics as well. } % \item While the methods of QFT in high-energy physics and condensed matter physics are very similar, their ontology is very different: % \begin{center} \includegraphics[width=1.0\linewidth]{ontology} \end{center} % \begin{itemize} \item In high-energy physics, fields are \emph{elementary} and particles are \emph{emergent} \item In condensed matter physics, particles are \emph{elementary} and fields are \emph{emergent} \end{itemize} % \therefore In this course, fields are the \emph{fundamental entities of the world}; particles are emergent, effective models for localized excitations of these fields. \end{itemize} } %%============================================================================== \reference{PS:15--19} %%============================================================================== \chapternpb{Elements of Classical Field Theory} \section{Lagrangian and Hamiltonian Formalism} \subsubsection{Recap: Classical mechanics of ``points''} \imp{With ``points'' we mean a discrete set of degrees of freedom.} % \begin{lot} \item \consider Degrees of freedom $q_i$ labeled by $i=1,\dots,N$ \item Lagrangian $L(\{q_i\},\{\dot q_i\},t)=T-V$\\ \imp{We write $q$ for $\{q_i\}=\{q_1,\dots,q_N\}$.}\\ \imp{$T$ is the kinetic, $V$ the potential energy.} \item Action $S[q]=\intdt\,L(q(t),\dot q(t),t)\,\in\mathbb{R}$\\ \imp{This is a \emph{functional} of trajectories $q=q(t)$.} \item \Emph{Hamilton's principle} of least action: % \begin{align} \frac{\delta S[q]}{\delta q}\stackrel{!}{=}0 \quad\Leftrightarrow\quad \delta S=\intdt \delta L\stackrel{!}{=}0 \end{align} % \imp{$\delta$ denotes functional derivatives/variations (\seepset{1}).} \item \Emph{Euler-Lagrange equations} ($i=1,\dots,N$): % \begin{align} \pdiff{L}{q_i}-\ddt\pdiff{L}{\dot q_i}=0 \end{align} \end{lot} \subsubsection{Analogous: Lagrangian Field Theory} \imp{Now we consider a \emph{continuous} set of degrees of freedom:} % \begin{lot} \item \consider One or more fields $\phi(x)$ on spacetime $x\in\reals^{1,3}/\reals^4$ with derivatives $\pmu\phi(x)$\\ \imp{where $\partial_0=\partial_t$ and $\partial_{i=1,2,3}=\partial_{x,y,z}$}\\ \imp{($\reals^{1,3}$: Minkowski space, $\reals^4$: Euclidean space; in the following, we focus on $\reals^{1,3}$)} \item Lagrangian \Emph{density} $\L(\phi,\partial\phi,x)$\\ \imp{Most general form: $\L(\{\phi_k\},\{\partial_\mu\phi_k\},\{x^\mu\})$. No explicit $x^\mu$-dependence in the following!} \leadsto Lagrangian $L=\int\dd{3}{x}\,\L(\phi,\partial\phi)$\\ \imp{(We omit the ``density'' in the following.)} \item Action: % \begin{align} S[\phi]=\intdt L =\int\d{t}\dd{3}{x}\,\L(\phi,\partial\phi) =\int\dd{4}{x}\,\L(\phi,\partial\phi) \end{align} \imp{$S[\phi]$ is a functional of ``field trajectories'' in $\reals^{1,3}$.} \item Action principle: % \begin{subalign} 0\stackrel{!}{=}\delta S[\phi] &=\int\dd{4}{x}\delta\L \\ &=\int\dd{4}{x}\left\{\pdiff{\L}{\phi}\delta\phi+\pdiff{\L}{(\pmu\phi)}\delta(\pmu\phi)\right\} \\ &\mimp{Add zero and use $\delta(\pmu\phi)=\pmu(\delta\phi)$} \\ &=\int\dd{4}{x}\left\{\pdiff{\L}{\phi}\delta\phi- \pmu\left(\pdiff{\L}{(\pmu\phi)}\right)\delta\phi +\pmu\left(\pdiff{\L}{(\pmu\phi)}\delta\phi\right)\right\} \\ &\mimp{Gauss theorem} \\ &=\int_\partial\d{\sigma_\mu}\pdiff{\L}{(\pmu\phi)}\underbrace{\delta\phi}_{=0} +\int\dd{4}{x} \underbrace{\left\{\pdiff{\L}{\phi}-\pmu\left(\pdiff{\L}{(\pmu\phi)}\right)\right\}}_{=0}\delta\phi \end{subalign} % \imp{Note that $\phi$ is fixed on the boundary $\partial$ and therefore $\delta\phi=0$.}\\ \imp{The second term vanishes because the integral must vanish for arbitrary variations $\delta \phi$.} \item Euler-Lagrange equations (one for each field $\phi$): % \begin{empheq}[box=\highlight]{align} \pdiff{\L}{\phi}-\pmu\left(\pdiff{\L}{(\pmu\phi)}\right)=0 \end{empheq} % \imp{Note the \emph{Einstein summation} over repeated indices.\\This expression is manifestly Lorentz invariant if $\L$ is a Lorentz scalar.} \end{lot} \subsubsection{Recap: Hamiltonian Mechanics} % \begin{align} \begin{array}{r} \text{Lagrangian}\\ L(q,\dot q,t) \end{array} \xrightarrow[% \begin{array}{c} \text{\small Conjugate momentum}\\ p\equiv\pdiff{L}{\dot q}\,\Leftrightarrow\,\dot q=\dot q(p) \end{array}]{\text{Legendre transformation}} \begin{array}{l} \text{Hamiltonian}\\ H(q,p,t)=p\dot q-L(q,\dot q,t) \end{array} \end{align} \subsubsection{Analogous: Hamiltonian Field Theory} \begin{lot} \item \consider $\vec x=\vec x_i\hateq i$ discrete \Emph{spatial} coordinates:\\ % \imp{We omit the time dependence of the fields to simplify the notation.}\\ % \begin{subalign} \pdiff{L}{\dot q_i}=p_i\hateq p(\vec x)=\pdiff{L}{\dot\phi(\vec x)} &=\frac{\partial}{\partial\dot\phi(\vec x)}\int\dd{3}{y}\L(\phi(\vec y),\dot\phi(\vec y)) \\ &\sim\sum_{\vec y}\dd{3}{y}\underbrace{\frac{\partial}{% \partial\dot\phi(\vec x)}\L(\phi(\vec y),\dot\phi(\vec y))}_{% \delta_{\vec x,\vec y}\left.\pdiff{\L}{\dot\phi}\right|_{\vec y=\vec x}} =\underbrace{\pdiff{\L}{\dot\phi(\vec x)}}_{\equiv\pi(\vec x)}\dd{3}{x} \end{subalign} % \imp{Spatial derivatives of the fields are represented by finite difference quotients and covered by the dependence on the (undifferentiated) fields.}\\[10pt] % \leadsto Momentum \Emph{density} conjugate to $\phi$ is $\pi=\pdiff{\L}{\dot\phi}$ \item Hamiltonian: % \begin{align} H=\sum_{\vec x}\,\overbrace{p(\vec x)}^{\pi(\vec x)\dd{3}{x}}\dot\phi(\vec x) -\overbrace{L}^{\sum_{\vec x}\L(\phi(\vec x),\dot\phi(\vec x))\dd{3}{x}} \end{align} % Therefore % \begin{empheq}[box=\highlight]{align} H=\int\dd{3}{x}\underbrace{\left\{\pi(x)\dot\phi(x)-\L(\phi,\dot\phi)\right\}}_{% \text{\Emph{Hamiltonian density}}\,\H(\phi,\pi)} \end{empheq} % \imp{Note that $\dot\phi=\dot\phi(\pi)$. Here we restored the time dependence of the fields: $\vec x\mapsto x$.} \end{lot} \begin{example}[Free scalar field] \begin{lot} \item Real field $\phi\,:\,\reals^3\times\reals\rightarrow\reals$ with $(\vec x,t)\mapsto\phi(\vec x,t)=\phi(x)$ \item Lagrangian (density): $\L=\hlf(\pt\phi)^2-\hlf(\nabla\phi)^2-\hlf m^2\phi^2=\hlf(\pmu\phi)^2-\hlf m^2\phi^2$\\ \imp{It is $(\pmu\phi)^2\equiv\pmu\phi\Pmu\phi=(\pt\phi)^2-(\px\phi)^2-(\py\phi)^2-(\pz\phi)^2$ with signature $g_{\mu\nu}=\diag{1,-1,-1,-1}$. Note that then $\pmu\Pmu=\pt^2-\nabla^2$.} \item Interpretation: % \begin{center} \includegraphics[width=0.95\linewidth]{tikz/free_boson} \end{center} % \imp{In $\L$, $m$ is refered to as \emph{mass}. This is not the inertial mass of the pendula but the stiffness of the harmonic potential!}\\ % \note{Continuum of spring-coupled pendula for $m=0$ $\Leftrightarrow$ 1D rubber band} \item Equation of motion (``field equation''): % \begin{align} -m^2\phi-\pmu(\Pmu\phi)=0 \quad\Leftrightarrow\quad (\pmu\Pmu+m^2)\phi=0 \end{align} % \imp{This is the classical (!) \termdef{Klein-Gordon equation}.} % \item Conjugate momentum field: $\pi=\pdiff{\L}{\dot\phi}=\dot\phi$ \item Hamiltonian (density): % \begin{subalign} \H&=\pi\dot\phi-\hlf\dot\phi^2+\hlf(\nabla\phi)^2+\hlf m^2\phi^2\\ &=\hlf\pi^2+\hlf(\nabla\phi)^2+\hlf m^2\phi^2 \end{subalign} % \imp{The Hamiltonian is $H=\int\dd{3}{x}\H(\phi,\pi)$.} \end{lot} \end{example} \section{Symmetries and Conservation Laws} \aside{What follows is based on Sénéchal \textit{``Conformal Field Theory''} (pp. 36--42,45--46) \cite{Francesco2012}.} \begin{lot} \item \consider General transformation of field $\phi\mapsto\phi'$: % \begin{align} x\mapsto x'=x'(x) \quad\text{and}\quad \phi(x)\mapsto \phi'(x')=\F(\phi(x)) \end{align} % \Emph{Two} effects: coordinates \Emph{and} (values of the) field transformed\\ % \imp{These are \emph{active transformations} that change physics. $x'=x'(x)$ is \emph{not} a (passive) coordinate transformation; the frame of reference remains fixed in the following!} \begin{example}[Rotation of a vector field $\vec\phi$] \begin{lot} \item \consider 3-component field $\vec\phi=(\phi_1,\phi_2,\phi_3)$ and $R\in\mathrm{SO}(3)$ rotation: % \begin{center} \includegraphics[width=0.5\linewidth]{tikz/symmetry_transformation} \end{center} \item $\vec x'=R \vec x$ and $\vec\phi'(x')=R\vec\phi(x)=R\vec\phi(R^{-1}x')$\\ \imp{This defines a \termdef{vector field}.} \end{lot} \end{example} \item Change of the action under $\phi\mapsto\phi'$: % \begin{subalign} S'\equiv S[\phi'] &=\int\dd{d}{x}\L(\phi'(x),\pmu\phi'(x))\\ &\mimp{Rename integration variables $x\to x'$}\\ &=\int\dd{d}{x'}\L(\phi'(x'),\pmu'\phi'(x'))\\ &\mimp{Definition}\\ &=\int\dd{d}{x'}\L(\F(\phi(x)),\pmu'\F(\phi(x)))\\ &\mimp{Substitution}\\ &=\int\dd{d}{x}\left|\pdiff{x'}{x}\right|\L\left(\F(\phi(x)),\pdiff{x^\nu}{x'^\mu}\,\partial_\nu\F(\phi(x))\right) \label{eq:symtrafo} \end{subalign} \aside{Skip first step, use colors for primes.} \end{lot} \begin{example}[Translations] \begin{lot} \item $x':=x+a$ and $\phi'(x'):=\phi(x)=\phi(x'-a)$\\ \imp{This defines a \termdef{scalar field}.} \item $\F=\Id$ trivial, $\phi'(x')=\F(\phi(x))=\phi(x(x'))$, and $\pdiff{x^\nu}{x'^\mu}=\delta_\mu^\nu$ \item Action: % \begin{align} S[\phi'] =\int\dd{d}{x}\L(\phi'(x),\pmu\phi'(x)) =\int\dd{d}{x}\L(\phi(x),\pmu\phi(x)) =S[\phi] \end{align} % \imp{The action is \emph{translation invariant}: $S=S'$!}\\ % \imp{This follows generally from the missing $x$-dependence of $\L$ for scalar fields.} \end{lot} \end{example} \begin{example}[Scale transformations] \begin{lot} \item $x':=\lambda x$ and $\phi'(x'):=\lambda^{-\Delta}\phi(x)=\lambda^{-\Delta}\phi(\lambda^{-1}x')$\\ \imp{$\Delta$ is the \termdef{scaling dimension} of the field $\phi$} \item $\F(\phi)=\lambda^{-\Delta}\phi$ and $\pdiff{x^\nu}{x'^\mu}=\lambda^{-1}\delta_\mu^\nu$ and $\left|\pdiff{x'}{x}\right|=\lambda^d$ \item Action: % \begin{subalign} S[\phi'] &=\lambda^d\int\dd{d}{x}\L(\lambda^{-\Delta}\phi(x),\lambda^{-1-\Delta}\pmu\phi(x)) \\ &\mimp{\consider Massless scalar field: $S[\phi]=\textstyle\hlf\int\dd{d}{x}(\pmu\phi)^2$} \\ &=\lambda^{d-2-2\Delta}\int\dd{d}{x}\L(\phi(x),\pmu\phi(x)) =\lambda^{d-2-2\Delta}S[\phi] \end{subalign} % \leadsto $S'=S$ iff $\Delta=\frac{d}{2}-1$\\ % \imp{This is an example of a \emph{\uref Conformal Field Theory (CFT)}.} \end{lot} \end{example} \begin{example}[Phase rotation] \begin{lot} \item $x':=x$ and $\phi'(x'):=e^{i\theta}\phi(x)$\\ % \imp{\therefore There are symmetries that only transform the fields but not the coordinates.} \item $\F(\phi)=e^{i\theta}\phi$ and $\pdiff{x^\nu}{x'^\mu}=\delta_\mu^\nu$ and $\left|\pdiff{x'}{x}\right|=1$ \end{lot} \end{example} %%============================================================================== \begin{lecture} \item Infinitesimal transformations and continuous symmetries \item Noether's theorem and conserved quantities \item Application to the energy-momentum tensor \end{lecture} %%============================================================================== %%============================================================================== \reference{PS:15--19} %%============================================================================== \subsubsection{Infinitesimal Transformations} \imp{We are interested in \emph{continuous} symmetries (\dref Lie groups).} \begin{lot} \item \consider \Emph{Infinitesimal} transformations (IT): % \begin{align} x'^\mu=x^\mu+w_a\vdiff{x^\mu}{w_a}(x) \quad\text{and}\quad \phi'(x')=\phi(x)+w_a\vdiff{\F}{w_a}(x) \label{eq:inftrafo} \end{align} % \imp{Here, $w_a$ denotes infinitesimal parameters of the transformation (sum over $a$ implied!).}\\ % \imp{They may vary from point to point: $w_a=w_a(x)$ (see below).} \item \Emph{Generator} of IT: % \begin{align} &\delta_w\phi(x):=\phi'(x)-\phi(x)\equiv -iw_a\,G_a\phi(x) \end{align} % With \aside{(omit first line and refer to previous equation)} % \begin{subalign} \phi'(x') &=\phi(x)+w_a\vdiff{\F}{w_a}(x)\\ &=\phi(x')-w_a\vdiff{x^\mu}{w_a}\pmu\phi(x')+w_a\vdiff{\F}{w_a}(x')+\O(w^2) \end{subalign} % it follows \imp{(replace $x'$ by $x$; these are just labels!)} % \begin{empheq}[box=\highlight]{align} iG_a\phi=\vdiff{x^\mu}{w_a}\pmu\phi-\vdiff{\F}{w_a} \end{empheq} % \imp{This function describes the infinitesimal change of the field at the same point.} \end{lot} \begin{example}[Translations] \begin{lot} \item $x'^\mu:=x^\mu+w^\mu\equiv x^\mu+w^\nu\vdiff{x^\mu}{w^\nu}$ with $\vdiff{x^\mu}{w^\nu}=\delta_\nu^\mu$ \item $\vdiff{\F}{w^\nu}=0$ \imp{(For a scalar or a vector field.)} \item $iG_\mu\phi=\delta_\mu^\nu\partial_\nu\phi-0$ and therefore % \begin{align} G_\mu=-i\partial_\mu\equiv P_\mu \end{align} % \imp{\therefore The ``momentum operator'' generates translations.} \end{lot} \end{example} \begin{example}[Scale Transformations] $G=-ix^\mu\pmu\equiv D$ \imp{\therefore Generates ``dilations'' in spacetime.}\\ % \imp{This simple form is valid for a scalar field with scaling dimension $\Delta=0$ so that $\vdiff{\F}{\lambda}=0$.} \end{example} \begin{example}[Spatial Rotations] $G_{\mu\nu}=i(x_\mu\partial_\nu-x_\nu\partial_\mu)+S_{\mu\nu}$ for $\mu,\nu=1,2,3$\\ % \imp{The first term generates coordinate rotations (\dref \emph{orbital angular momentum operator}).}\\ % \imp{$S_{\mu\nu}$ are spin matrices that generate field transformations (for non-scalar fields).}\\ % \aside{Question: What generates $G_{\mu\nu}$ if either $\mu=0$ or $\nu=0$? Answer: Boosts.} \end{example} \subsubsection{Noether's Theorem} \begin{lot} \item \consider Transformation \cref{eq:inftrafo} which is a % \begin{empheq}[box=\highlight]{align} \text{Symmetry of the action} \quad :\Leftrightarrow \quad S[\phi]=S[\phi'] \end{empheq} % for $w_a$ independent of $x$ (\termdef{rigid transformation}). \item \Emph{Assume} that \cref{eq:inftrafo} is \Emph{not} rigid: $w_a=w_a(x)$\\ % \imp{We assume that $w_a$ is sufficiently smooth so that $\pmu w_a$ is infinitesimal as well, i.e., $\O(w_a)=\O(\pmu w_a)$.} \item Jacobian: $\pdiff{x'^\nu}{x^\mu}=\delta_\mu^\nu+\pmu\left(w_a\vdiff{x^\nu}{w_a}\right)$ \therefore $\left|\pdiff{x'}{x}\right|=1+\pmu\left(w_a\vdiff{x^\mu}{w_a}\right)$\\ % \imp{Use $\det(\Id+A)=1+\tr A+\O(A^2)$.} \item Inverse Jacobian matrix: $\pdiff{x^\nu}{x'^\mu}=\delta_\mu^\nu-\pmu\left(w_a\vdiff{x^\nu}{w_a}\right)$\\ % \imp{This is true in linear order of $w_a$ and $\pmu w_a$.} \item Use \cref{eq:symtrafo}: % \begin{align} S'= \begin{aligned}[t] &\int\dd{d}{x} \left[1+\pmu\left(w_a\vdiff{x^\mu}{w_a}\right)\right] \\ \times\,&\L\left( \phi+w_a\vdiff{\F}{w_a} , \left[\delta_\mu^\nu-\pmu\left(w_a\vdiff{x^\nu}{w_a}\right)\right] \times \left[\partial_\nu\phi+\partial_\nu\left(w_a\vdiff{\F}{w_a}\right)\right] \right) \end{aligned} \end{align} \item Expand in 1st order of $w_a$ and $\pdiff{w_a}{x^\mu}$ \item \consider $\delta S\equiv S'-S$ \therefore Only terms $\propto\pdiff{w_a}{x^\mu}$ remain\\ \imp{Because the transformation is a symmetry of the action by assumption, i.e., for $w_a=\const$ (a rigid transformation) it is $S'=S$!}\\ \note{This is equivalent to the \emph{definition} of a symmetry (of the action).} \item For generic, non-rigid symmetry transformation we find % \begin{align} \delta S=-\int\dd{d}{x} j_a^\mu\pmu w_a \end{align} % with the \Emph{current} % \begin{empheq}[box=\highlight]{align} j_a^\mu\nte\left\{\pdiff{\L}{(\pmu\phi)}\partial_\nu\phi-\delta_\nu^\mu\L\right\}\vdiff{x^\nu}{w_a} -\pdiff{\L}{(\pmu\phi)}\vdiff{\F}{w_a} \label{eq:noethercurrent} \end{empheq} % associated to the IT $\vdiff{x^\nu}{w_a}$ and $\vdiff{\F}{w_a}$.\\ % \imp{This is only true for transformations that are symmetries of the action!} \item Integration by parts \therefore $\delta S=\int\dd{d}{x} w_a\,\pmu j_a^\mu$\\ % \imp{Here we assume that the variations $w_a(x)$ vanish on the boundaries (possibly at infinity).} \item \consider $\phi$ that \Emph{obeys the equations of motion} \therefore $\delta S=0$ for \Emph{arbitrary} variations $\phi'=\phi+\delta\phi$\\ % In particular, for arbitrary non-rigid transformations $w_a(x)$! \\[10pt] % It follows \Emph{Noether's (first) theorem:} % \begin{empheq}[box=\highlight]{align} \pmu j_a^\mu=0\qquad\forall_{x,a} \end{empheq} % \imp{This is a \emph{conservation law} with \emph{conserved current} $j_a^\mu$.} \item \Emph{Conserved charge:} % \begin{empheq}[box=\highlight]{align} Q_a := \int_\text{Space}\dd{d-1}{x} j_a^0 \end{empheq} % Indeed: % \begin{align} \diff{Q_a}{t}= \int_\text{Space}\dd{d-1}{x} \partial_0 j_a^0 \stackrel{\text{Noether}}{=} -\int_\text{Space}\dd{d-1}{x} \partial_k j_a^k \stackrel{\text{Gauss}}{=} -\int_\text{Surface}\d{\sigma_k} j_a^k=0 \end{align} % \imp{Here we assume that $j_a^k\equiv 0$ on the boundaries---typically at spatial infinity, i.e., the universe is closed.} \imp{$k=1,2,3$ denotes the spatial coordinates.} \end{lot} \begin{blocknote} The current \cref{eq:noethercurrent} is called \Emph{canonical current} as there is an ambiguity: % \begin{align} \tilde j_a^\mu:=j_a^\mu+\partial_\nu B_a^{\mu\nu} \quad\text{with}\quad B_a^{\mu\nu}=-B_a^{\nu\mu}\quad\text{arbitrary} \quad\Rightarrow\quad \pmu\tilde j_a^\mu=0 \end{align} \end{blocknote} \begin{blocknote} \vspace{-15pt} \begin{align} \underbrace{% \text{Symmetric Lagrangian}\quad\Rightarrow\quad \text{Symmetric action} }_{\rightarrow\,\text{Conserved currents}} \quad\Rightarrow\quad\text{Symmetric EOMs} \end{align} % \imp{Continuous symmetries of the EOMs do \emph{not} imply conserved currents!}\\[5pt] % \note{\emph{Example:} % $\L=\hlf(\partial\phi)^2-\hlf m^2\phi^2$ yields the EOM $(\partial^2+m^2)\phi=0$ which clearly is symmetric under rescaling of the field: $\phi'(x)=\lambda\phi(x)$. However, the Lagrangian density $\L$ is \emph{not} invariant under this transformation (neither does it change by a total derivative), so that Noether's theorem does not apply!} \end{blocknote} \subsubsection{Application: The Energy-Momentum-Tensor (EMT)} \note{\emph{Special relativity:}\\ Global spacetime symmetries (Lorentz transformations + \Emph{Translations} = Poincaré group)}\\[5pt] % \note{\emph{General relativity:}\\ Local spacetime symmetries (\uref Diffeomorphisms \therefore Gauge symmetries)} \begin{lot} \item \consider Infinitesimal \Emph{spacetime translations}: $x'^\mu=x^\mu+\vep^\mu$ \therefore $\vdiff{x^\mu}{\vep^\nu}=\delta^\mu_\nu$, $\vdiff{\F}{\vep^\nu}=0$ \item \consider Translation-invariant action: $S'=S$\\ % \imp{This includes translations in time!} \item \Emph{Conserved currents}: % \begin{align} \tensor{T}{^\mu_\nu} =\left\{\pdiff{\L}{(\pmu\phi)}\partial_\rho\phi -\delta^\mu_\rho\L\right\}\underbrace{% \vdiff{x^\rho}{\vep^\nu} }_{\delta^\rho_\nu} =\pdiff{\L}{(\pmu\phi)}\partial_\nu\phi-\delta^\mu_\nu\L \end{align} % \begin{emphalign} T^{\mu\nu}=g^{\nu\rho}\tensor{T}{^\mu_\rho}=\pdiff{\L}{(\pmu\phi)}\partial^\nu\phi-g^{\mu\nu}\L \qquad\text{(Energy-Momentum Tensor)} \label{eq:emt} \end{emphalign} % with $\pmu T^{\mu\nu}=0$ and four conserved charges % \begin{emphalign} P^\nu=\int\dd{3}{x}T^{0\nu} \label{eq:Pnu} \end{emphalign} % \imp{Note that these quantities are only conserved for classical \emph{solutions} of the EOMs.} \item \Emph{Energy} ($\nu=0$) \aside{(skip first step)}: % \begin{align} P^0=\int\dd{3}{x}T^{00}=\int\dd{3}{x}\left\{\pdiff{\L}{\dot\phi}\dot\phi-\L\right\}=\int\dd{3}{x}\H(\phi,\pi)=H \label{eq:P0} \end{align} % \imp{\therefore The Hamiltonian is the component of a 4-vector and not Lorentz invariant!}\\ % \imp{By contrast, the Lagrangian \emph{is} Lorentz invariant (for relativistic field theories).}\\ \item \Emph{Kinetic momentum} ($\nu=i$): % \begin{align} P^i=\int\dd{3}{x}T^{0i}=\int\dd{3}{x}\pdiff{\L}{\dot\phi}(-\partial_i\phi)=-\int\dd{3}{x}\pi\partial_i\phi \end{align} % \imp{$\pi$ is the \emph{canonical} momentum.} \end{lot} \begin{blocknote} In general $T^{\mu\nu}\neq T^{\nu\mu}$ for the canonical EMT. But: % \begin{align} \tilde T^{\mu\nu}:=T^{\mu\nu}+\partial_\rho K^{\rho\mu\nu} \quad\text{with}\quad K^{\rho\mu\nu}=-K^{\mu\rho\nu} \end{align} % Choose $K^{\rho\mu\nu}$ such that $\tilde T^{\mu\nu}=\tilde T^{\nu\mu}$ (\uref \termdef{Belinfante(-Rosenfeld) EMT})\\[5pt] % \imp{Using the EMT as source of the gravitational field in \emph{general relativity} requires a \emph{symmetric} EMT because the Einstein field equations read $R_{\mu\nu}-\hlf g_{\mu\nu}R=8\pi G/c^4\,T_{\mu\nu}$ with the (symmetric) Ricci tensor $R_{\mu\nu}$ and the (symmetric) metric $g_{\mu\nu}$.} \end{blocknote} \begin{example}[Electromagnetism (EM) in vacuum] \imp{Details \seepset{1}} \begin{lot} \item Four-component gauge field: $A^\mu=(\phi,A^1,A^2,A^3)$ \item EM field tensor: $F_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\mu$\\ \imp{Contains $E$- and $B$-field components.} \item Lagrangian: $\L_\mathrm{em}(A,\partial A)=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$ \item Action: $S_\mathrm{em}=\int\dd{4}{x}\L_\mathrm{em}$ \item Euler-Lagrange equations: $\pmu F^{\mu\nu}=0$ (inhomogeneous Maxwell equations) \item $S_\mathrm{em}$ is \Emph{Lorentz invariant} and \Emph{translation invariant} (= Poincaré invariant)\\ % \therefore EMT = conserved currents\\ % \aside{Why is this obvious?} \item Canonical EMT: $T_\mathrm{em}^{\mu\nu}=\pdiff{\L_\mathrm{em}}{(\pmu A_\lambda)}\partial^\nu A_\lambda-g^{\mu\nu}\L_\mathrm{em}$ \item Symmetric EMT using $K^{\lambda\mu\nu}:=F^{\mu\lambda}A^\nu$: % \begin{emphalign} \tilde T_\mathrm{em}^{\mu\nu} \nte\frac{1}{4}g^{\mu\nu}F_{\rho\lambda}F^{\rho\lambda}-F^{\mu\rho}\tensor{F}{^\nu_\rho} \end{emphalign} % \begin{itemize} \item $\tilde T^{00}=\frac{1}{2}(E^2+B^2)$ \imp{(\dref Energy density)} \item $\tilde T^{0i}=(\vec E\times \vec B)_i$ \imp{(\dref Pointing vector)} \item $\tilde T^{ij}=\sigma_{ij}$ \imp{(\uref Maxwell stress tensor)} \end{itemize} \end{lot} \end{example}