%%============================================================================== \begin{lecture} \item Canonical quantization of the Klein-Gordon field \item Heisenberg picture: Time evolution of the quantized Klein-Gordon field \end{lecture} %%============================================================================== %%============================================================================== \begin{problemset} \item The classical complex Klein-Gordon field \item The quantized complex Klein-Gordon field \end{problemset} %%============================================================================== %%============================================================================== \reference{PS:19--26} %%============================================================================== \chapter{The Klein-Gordon Field} \section{Canonical Quantization} \begin{lot} \item \Emph{Theory:} % \begin{enumerate} \item \Emph{Real} field $\phi(x)$ \imp{(\seepset{2} for the complex analog)} \item Lagrangian: $\L=\hlf(\pmu\phi)^2-\hlf m^2\phi^2$ \imp{(\termdef{free scalar field})} \item EOM: $(\partial^2+m^2)\phi=0$ \imp{(Klein-Gordon equation)} \item Hamiltonian: $\H=\hlf\pi^2+\hlf(\nabla\phi)^2+\hlf m^2\phi^2$ \end{enumerate} \item \Emph{Canonical quantization:} % \begin{eqaligned}[eq:phi_com] \com{\phi(\vec x)}{\pi(\vec y)} &=i\delta^{(3)}(\vec x-\vec y) \\ \com{\phi(\vec x)}{\phi(\vec y)} &=0 \\ \com{\pi(\vec x)}{\pi(\vec y)} &=0 \end{eqaligned} % with $\phi^\dag=\phi$, $\pi^\dag=\pi$ \imp{(``real'' field operators)} and $\vec x\in\reals^3$.\\[10pt] % \imp{This is completely analog to the canonical quantization of ``points'' known from undergraduate courses on quantum mechanics if Kronecker deltas are replaced by delta distributions: $\com{q_i}{p_i}=i\delta_{ij}\,\rightarrow\,\com{\phi(\vec x)}{\pi(\vec y)} =i\delta^{(3)}(\vec x-\vec y)$.}\\[10pt] % \imp{For now, we are in the Schrödinger picture where the fields do not depend on time!} \item \Emph{Goals:} % \begin{itemize} \item Representation of field operators \imp{\uref \cref{eq:phi_com}} \item Spectrum of Hamiltonian \item Time evolution of field operators \imp{$\phi(\vec x)\mapsto\phi(x)$} \end{itemize} \item \Emph{Motivation:} \imp{(The following facts are used to come up with a tentative representation for the field operators; that it is correct can be later checked rigorously.)} % \begin{lot} \item Fourier transform of KG equation in space: % \note{% \begin{align} \phi(\vec x,t)=\int\ddp{3}{p} e^{i\vec p\vec x}\tilde\phi(\vec p,t) \end{align} } \note{Then} % \begin{align} \left[\pt^2+(|\vec p|^2+m^2)\right]\tilde\phi(\vec p,t)=0 \end{align} % \therefore \Emph{Decoupled harmonic oscillators} with frequency $\omp{p}=\sqrt{|\vec p|^2+m^2}$\\ % and constraint $\tilde \phi^*(\vec p,t)=\tilde \phi(-\vec p,t)$ (since $\phi^*=\phi$). \item \consider Hamiltonian $H_\mathrm{SHO}=\hlf P^2+\hlf \omega^2 X^2$\\ % Introduce $X=\frac{1}{\sqrt{2\omega}}(a+a^\dag)$ and $P=-i\sqrt{\frac{\omega}{2}}(a-a^\dag)$ with $\com{a}{a^\dag}=1$\\ % \therefore $H_\mathrm{SHO}=\omega (a^\dag a+\hlf)$ \imp{(diagonal!)}\\ % Here: $P\leftrightarrow \tilde \pi(\vec p)$ and $X\leftrightarrow \tilde\phi(\vec p)$ \end{lot} \item \imp{This motivates the} \Emph{Field operators} % \begin{eqaligned}[eq:phi_op] \phi(\vec x) &:=\int\ddp{3}{p}\frac{1}{\sqrt{2\omp{p}}}\left(\ap{p} e^{i\vec p\vec x}+\adp{p} e^{-i\vec p\vec x}\right) \\ &=\int\ddp{3}{p}\underbrace{\frac{1}{\sqrt{2\omp{p}}}\left(\ap{p}+a_{-\vec p}^\dag\right)}_{\tilde \phi(\vec p)}e^{i\vec p\vec x} \\ \pi(\vec x)&:=\int\ddp{3}{p}\underbrace{(-i)\sqrt{\frac{\omp{p}}{2}}\left(\ap{p}-a_{-\vec p}^\dag\right)}_{\tilde \pi(\vec p)} e^{i\vec p\vec x} \end{eqaligned} % \aside{(Use colors to skip second line.)}\\ \imp{The $-\vec p$ is necessary to make the fields ``real'': $\phi^\dag = \phi$ and $\pi^\dag=\pi$.}\\ with \Emph{momentum modes} % \begin{align} \com{\ap{p}}{\adp{q}}=(2\pi)^3\delta^{(3)}(\vec p-\vec q) \label{eq:ap_com} \end{align} % \imp{(All other commutators vanish.)}\\[5pt] % \imp{\easytoshow\cref{eq:ap_com}\land\cref{eq:phi_op}\limplies\cref{eq:phi_com} (Check this at home!)} \item \Emph{Hamiltonian:} % \begin{emphalign} H\nte \int\ddp{3}{p}\omp{p}\Big (\adp{p}\ap{p}+\hlf \underbrace{\com{\ap{p}}{\adp{p}}}_{\propto\,\delta(0)=\infty}\Big ) \end{emphalign} % \imp{Ignore the infinite term since only relative energies are physical!\\This infinity accounts for the zero-point energies of all harmonic oscillator modes.}\\ \note{Dropping this infinity is called \emph{normal ordering} (\fref later).} \item \Emph{Eigenstates \& Spectrum:} % \begin{itemize} \item \easytoshow $\com{H}{\adp{p}}=\omp{p}\adp{p}$ \therefore \consider Vacuum $\ket{0}$ with $\ap{p}\ket{0}=0$ \therefore Eigenstates $\adp{p}\adp{q}\dots\ket{0}$ \imp{(span complete Hilbert space)} \imp{\therefore Irreducible representation of momentum mode algebra \cref{eq:ap_com}} \item Energy: $E_{\vec p}=\omp{p}=+\sqrt{|\vec p|^2+m^2}$ \imp{(relativistic dispersion, positive energies!)} \item (Kinetic) momentum: % \begin{align} P^i=\int\dd{3}{x}\pi(\vec x)(-\partial_i)\phi(\vec x)\nte \int\ddp{3}{p} p^i \adp{p}\ap{p} \label{eq:Pop} \end{align} % \imp{This is now an operator!} \item Statistics: $\adp{p}\adp{q}\ket{0}=\adp{q}\adp{p}\ket{0}$ \end{itemize} % \therefore Excitations $\adp{p}$ commute and carry additive energy \& momentum\\ % \therefore \Emph{Bosonic particles} \imp{(in momentum space)} \item \Emph{Normalization:} \begin{lot} \item \consider $\Lambda=\R'L_3(\beta)\R\in \POLG$ \therefore $p'=(E_{\vec p'},\vec p')=\Lambda p$ with $p=(E_{\vec p},\vec p)$ \imp{Recall that all Lorentz transformations can be generated from spatial rotations and a boost $L_3(\beta)$ in $z$-direction!} \item Jacobian in space: $\Det{\frac{\partial\vec p'}{\partial\vec p}}\nte\diff{p_3'}{p_3}\nte\frac{E_{\vec p'}}{E_{\vec p}}$\\ % \therefore $\delta^{(3)}(\vec p-\vec q)=\frac{E_{\vec p'}}{E_{\vec p}}\,\delta^{(3)}(\vec p'-\vec q')$\\ % \therefore $\delta^{(3)}(\vec p-\vec q)$ is not Lorentz invariant but $E_{\vec p}\,\delta^{(3)}(\vec p-\vec q)$ is! \aside{Use colors to shorten this!}\\ % \imp{3D volumes are \emph{not} invariant under boosts due to Lorentz contraction!} \item \Emph{Single-particle eigenstates:} % \begin{align} \ket{\vec p}:={\color{marked}\sqrt{2E_{\vec p}}}\;\adp{p}\ket{0} \quad\Rightarrow\quad \braket{\vec p}{\vec q} =(2\pi)^3\,\underbrace{{\color{marked}2E_{\vec p}}\,\delta^{(3)}(\vec p-\vec q)}_{ \text{Lorentz invariant}} \label{eq:sp_eigenstates} \end{align} % \imp{This follows directly from the commutation relations.\\The $2$ is just convention.} \end{lot} \item \Emph{Lorentz transformations} $\Lambda\in\POLG$:\\ % \imp{We need a unitary \emph{representation} of the Lorentz group $\POLG$ on the Hilbert space!} % \begin{align} U(\Lambda)\ket{\vec p}:=\ket{\Lambda\vec p} \quad\Leftrightarrow\quad U(\Lambda)\adp{p}U^{-1}(\Lambda)=\sqrt{\frac{E_{\Lambda\vec p}}{E_{\vec p}}}\,a^\dag_{\Lambda\vec p} \end{align} % \imp{It is $(\Lambda\vec p)^i \equiv \Lambda^{i}_{\mu}p^\mu$ (i.e., the spatial projection). Note that the ``boost part'' of $\Lambda$ is hidden in the normalization of the state!} \note{You can check that $U^\dag(\Lambda)U(\Lambda)=\Id$ using the single-particle states and our normalization of these states \cref{eq:sp_eigenstates}. The representation $U(\Lambda)$ is \emph{infinite-dimensional} and can therefore be \emph{unitary} despite the non-compactness of the Lorentz group.} \item \Emph{Interpretation of $\phi(\vec x)$:} % \begin{align} \phi(\vec x)\ket{0}=\int\ddp{3}{p}{\color{marked}\frac{1}{2E_{\vec p}}}e^{-i\vec p\vec x}\ket{\vec p} \end{align} % For non-relativistic $|\vec p|\ll m\,\Rightarrow\,E_{\vec p}\approx\const$\\ % \note{\therefore State $\ket{\vec x}$ of particle at position $\vec x$}\\ % \therefore $\phi(\vec x)$ creates particle at position $\vec x$ % \note{% \begin{itemize} \item This interpretation is also consistent with the ``position-space representation'' $\bra{0}\phi(\vec x)\ket{\vec p}\nte e^{i\vec p\vec x}$. \item The factor $\frac{1}{2E_{\vec p}}$ suppresses large momenta and ``smears out'' the position of the particle on length scales of its Compton wavelength $\lambda_c=1/m$ (\fref space-like two-point correlation function $\bra{0}\phi(\vec x)\phi(\vec y)\ket{0}\sim e^{-m|\vec x-\vec y|}$). \end{itemize}} \end{lot} \begin{blocknote} \label{note:LI_measure} \begin{itemize} \item Projector on single-particle sector: $\mathds{1}_1=\int\ddp{3}{p}\ket{\vec p}\frac{1}{2E_{\vec p}}\bra{\vec p}$ \item \consider $f(p)$ Lorentz invariant \therefore $\int\ddp{3}{p}\frac{f(p)}{2E_{\vec p}}$ is Lorentz invariant \end{itemize} \end{blocknote} \section{The Klein-Gordon Field in Space-Time} \imp{So far: Schrödinger picture}\\ % \imp{Now: Heisenberg picture} \begin{lot} \item \Emph{Heisenberg operators:} $\phi(x)=\phi(\vec x,t)=e^{iHt}\phi(\vec x)e^{-iHt}$ \imp{(similar for $\pi(x)$)} \item \Emph{Heisenberg equation:} $i\pt\O=\com{\O}{H}$ for $\O=\phi,\pi$ yields % \begin{subalign} i\pt\phi(x) &= \note{% \com{\p(x)}{\int\dd{3}{y} \left\{\hlf\pi^2(\vec y,t)+\hlf(\nabla\phi(\vec y,t))^2+\hlf m^2\phi^2(\vec y,t)\right\}} \nonumber } \\ &= \note{% \int\dd{3}{y}i\delta^{(3)}(\vec x-\vec y)\pi(\vec y,t) \nonumber } \\ &=i\pi(x) \\ i\pt\pi(x)&\nte -i(-\nabla^2+m^2)\phi(x) \end{subalign} % \begin{emphalign} \Rightarrow\quad(\pt^2-\nabla^2+m^2)\phi(x)=0\quad\text{(Klein-Gordon equation)} \end{emphalign} \item Time-evolution of modes: % \begin{subalign} e^{iHt}\ap{p}e^{-iHt}&=\ap{p}e^{-iE_{\vec p}t}\\ e^{iHt}\adp{p}e^{-iHt}&=\adp{p}e^{+iE_{\vec p}t} \end{subalign} % \aside{Use colors to skip last row.}\\ % \imp{This can be shown informally by using $H_{\vec p}=E_{\vec p}\,\adp{p}\ap{p}$ and counting excitations (i.e., on the number basis).} \item \Emph{Field operators:} % \begin{emphalign} \phi(x) &=\int\ddp{3}{p}\frac{1}{\sqrt{2\Ep{p}}}\left. \left(\ap{p} e^{-ipx}+\adp{p} e^{ipx}\right)\right|_{p^0=\Ep{p}}\\ \pi(x)&=\pt\p(x) \end{emphalign} % \imp{Here, $px=p^\mu x_\mu=\Ep{p}t-\vec p\vec x$; note that $p^0=\Ep{p}$.\\ % In the following, $\ap{p}$ and $\adp{p}$ always denote the \emph{time-independent} Schrödinger operators! } \end{lot} \begin{blocknote} \begin{lot} \item Hamiltonian generates time translations:\\ % $\phi(\vec x,t)=e^{iHt}\underbrace{\phi(\vec x,0)}_{\phi(\vec x)}e^{-iHt}$ \item Total momentum operator generates space translations:\\ % $\phi(\vec x)=e^{-i\vec P\vec x}\phi(\vec 0)e^{i\vec P\vec x}$ \item Four-momentum operator generates space-time translations:\\ % $\phi(x)=e^{iPx}\phi(0)e^{-iPx}$\\ % \imp{Here, $P^\mu=(H,\vec P)$ where $\vec P$ is defined in \cref{eq:Pop}.} \end{lot} \end{blocknote} \begin{blocknote} \imp{Note that $p^0=\Ep{p}$ is always positive:} % \begin{itemize} \item $e^{-ipx}$ $\leftrightarrow$ \Emph{positive-frequency} solution of KG equation $\leftrightarrow$ destruction operator $\ap{p}$ \item $e^{+ipx}$ $\leftrightarrow$ \Emph{negative-frequency} solution of KG equation $\leftrightarrow$ creation operator $\adp{p}$ \end{itemize} % \imp{As \emph{single-particle wavefunctions}, solutions with positive/negative frequency correspond to solutions with positive/negative energy. Note that there are only excitations with positive energy in the quantized field theory!} \end{blocknote} %%============================================================================== \begin{lecture} \item Causality \item Green's functions of the Klein-Gordon theory \item The Feynman propagator \end{lecture} %%============================================================================== %%============================================================================== \reference{PS:27--31} %%============================================================================== \subsubsection{Causality} \consider Amplitude for a particle to propagate from $y$ to $x$: % \begin{emphalign} D(x-y)\equiv \bra{0}\phi(x)\phi(y)\ket{0} \nte \int\ddp{3}{p}\frac{1}{2\Ep{p}}e^{-ip(x-y)} \label{eq:Dboson} \end{emphalign} % \imp{This expression is Lorentz invariant, i.e., $D(\Lambda(x-y))=D(x-y)$ for all $\Lambda\in\POLG$ [more generally, for all orthochronous Lorentz transformations $\Lambda\in \mathrm{O}^+(1,3)$].}\\ % \note{This is \emph{not} true for non-orthochronous Lorentz transformations which flip the sign of $D(x-y)$ since $\Ep{p}=p^0\mapsto -p^0=-\Ep{p}$!} \begin{lot} \item\consider\Emph{Time-like distance:} $x^0-y^0=t$ and $\vec x-\vec y=0$ % \begin{subalign} D(x-y)&=\frac{4\pi}{(2\pi)^3}\int_0^\infty\d{p}\frac{p^2}{2\sqrt{p^2+m^2}}\,e^{-i\sqrt{p^2+m^2} t} \\ &=\frac{1}{4\pi^2}\int_m^\infty\d{E}\sqrt{E^2-m^2}\,e^{-iEt} \\ &\stackrel{t\to\infty}{\neq}0\quad\text{\imp{(actually not convergent)}} \\ &\note{\stackrel{t\to\infty}{\sim} e^{-imt}}\quad\text{\aside{(this is very hand-wavy)}} \end{subalign} % \therefore Does not vanish \therefore Propagation possible \item\consider\Emph{Space-like distance:} $x^0-y^0=0$ and $\vec x-\vec y=\vec r$ % \begin{subalign} D(x-y)&=\int\ddp{3}{p}\frac{1}{2\Ep{p}}\,e^{i\vec p\vec r} \\ &=\frac{2\pi}{(2\pi)^3}\int_0^\infty\d{p}\frac{p^2}{2\Ep{p}}\frac{e^{ipr}-e^{-ipr}}{ipr} \\ &=\frac{-i}{2(2\pi)^2r}\int_{-\infty}^\infty\d{p}\frac{p\,e^{ipr}}{\sqrt{p^2+m^2}} \label{eq:Dsl2} \end{subalign} % Use \Emph{Cauchy's integral theorem} with the following path: % \begin{center} \includegraphics[width=0.6\linewidth]{tikz/cauchy} \end{center} % \begin{itemize} \item \imp{Show that the curved sections vanish for $R\to\infty$ and $\vep\to 0$, respectively!}\\ % \note{Showing that $B,F\to 0$ for $R\to\infty$ is actually tricky and requires some kind of regularization (that P\&S are silent about) to exponentially suppress the oscillating terms close to the real axis. One way to to fix this is to focus on the \emph{asymptotics} $r\to\infty$ (which is our goal here). The oscillating terms can then be exponentially suppressed in the limit $r\to\infty$ so that the contributions from the arcs become negligible. Strictly speaking, the non-convergent integral \cref{eq:Dsl2} should be \emph{defined} by such an appropriately chosen limit.} \item \imp{It is $C=E$ since the minus from the opposite direction and the branch cut cancel.} \end{itemize} Then % \begin{align} D(x-y)&=-C-E=-2C \\ &=\frac{-i}{(2\pi)^2r}\int_{im}^{\infty}\d{p}\frac{p\,e^{ipr}}{\sqrt{p^2+m^2}} \\ &\stackrel{\rho=-ip}{=}\frac{1}{4\pi^2r}\int_{m}^{\infty} \d{\rho}\frac{\rho\,e^{-\rho r}}{\sqrt{\rho^2-m^2}} \label{eq:Dsl} \\ &\stackrel{r\to\infty}{\sim}e^{-mr} \end{align} % \therefore Vanishes exponentially \imp{(but non-zero!) \therefore Problem?}\\ % \note{The integral \cref{eq:Dsl} can be evaluated in terms of \emph{modified Bessel functions of the second kind}, the asymptotics of which is known and yields the given exponential decay. Note that simply upper bounding the integrand by $e^{-\rho r}\leq e^{-mr}$ leaves a diverging integral behind so that one ends up with the useless upper bound $e^{-mr}\times\infty$.} \item \consider \Emph{Measurements} $A$ and $B$: can affect each other iff $\com{A}{B}\neq 0$\\ % Simplest choice: $A=\phi(x)$ and $B=\phi(y)$\\ % \imp{Causality is preserved if all observables commute at space-like separations!}\\ % \imp{Since $\pi=\pt\phi$, it is sufficient for $\com{\phi(x)}{\phi(y)}$ to vanish for $(x-y)^2<0$.} % \begin{subalign} \com{\p(x)}{\p(y)}&= \begin{aligned}[t] &\int\ddp{3}{p}\frac{1}{\sqrt{2\Ep{p}}} \int\ddp{3}{q}\frac{1}{\sqrt{2\Ep{q}}} \\ &\times \com{ \left(\ap{p} e^{-ipx}+\adp{p} e^{ipx}\right) }{ \left(\ap{q} e^{-iqy}+\adp{q} e^{iqy}\right) } \end{aligned} \\ &=\int\ddp{3}{p}\frac{1}{2\Ep{p}}\left(e^{-ip(x-y)}-e^{ip(x-y)}\right) \\ &=D(x-y)-D(y-x) \end{subalign} % Let $(x-y)^2<0$ space-like \therefore $\exists\Lambda^*\in\POLG\;:\;\Lambda^*(x-y)=-(x-y)$:\\ \imp{The \emph{proper orthochronous Lorentz group} $\POLG$ is a connected subgroup of the Lorentz group $\LG$, the elements of which connect continuously to the identity.} % \begin{center} \includegraphics[width=0.6\linewidth]{tikz/lorentz_trafo} \end{center} % \imp{Continuous transformations (rotations in space and boosts) allow for $(x-y)\mapsto -(x-y)$ only if $(x-y)^2<0$. For time-like distances, this requires discontinuous transformations (time-reversal).} \\[10pt] Then % \begin{emphalign} \com{\p(x)}{\p(y)} &=D(x-y)-D(\Lambda^*(y-x))\nonumber\\ &\note{(x-y)^2<0}\nonumber\\ &=D(x-y)-D(x-y)\equiv 0 \quad\text{(Causality)} \end{emphalign} % \imp{For time-like separation, $(x-y)^2>0$, there is no such continuous transformation and the argument breaks down.} \\[10pt] % \note{The first line follows from the Lorentz invariant integral measure in Note~\ref{note:LI_measure} and the definition of the propagator in \cref{eq:Dboson}. Remember that $D$ is only invariant under \emph{orthochronous} Lorentz transformations but picks up a minus sign under time inversion!} \end{lot} \subsubsection{The Propagator} \begin{lot} \item Since $\com{\p(x)}{\p(y)}\propto\mathds{1}$ \imp{(the commutator is a c-number)}, we can write ($x^0>y^0$ for now)\\ % \note{``c-number'' historically denotes scalar multiples of the identity, i.e. classical/commuting/complex ``numbers''.} \begin{subalign} \bra{0}\com{\p(x)}{\p(y)}\ket{0} &=\int\ddp{3}{p}\frac{1}{2\Ep{p}}\left(e^{-ip(x-y)}-e^{ip(x-y)}\right) \\ &\mimp{Substitute $\vec p\to-\vec p$ to obtain the second term:} \\ &=\int\ddp{3}{p}\left\{ \frac{e^{-ip(x-y)}|_{p^0=\Ep{p}}}{2\Ep{p}} +\frac{e^{-ip(x-y)}|_{p^0=-\Ep{p}}}{-2\Ep{p}} \right\} \\ &\mimp{Residue theorem with clockwise orientation (therefore the $-1$):} \\ &\stackrel{x^0>y^0}{=}\int\ddp{3}{p}\int_{\gamma=\gamma_R}\frac{\d{p^0}}{2\pi i} \frac{-1}{\underbrace{p^2-m^2}_{(p^0-\Ep{p})(p^0+\Ep{p})}}\,e^{-ip(x-y)} \\ &=\int_{\gamma=\gamma_R}\ddp{4}{p}\frac{i}{p^2-m^2}\,e^{-ip(x-y)} \label{eq:DR_cont_int} \end{subalign} % with contour $\gamma_R$ % \begin{center} \includegraphics[width=0.6\linewidth]{tikz/contour_retarded} \end{center} % \imp{The arc vanishes in the lower/upper-half pane for $x^0>y^0$ and $x^0y^0$: close contour below \item $x^0y^0\\ D(y-x) & \text{for}\;x^0